Квн: купил

Новые типы энергонезависимой памяти

Читая научные исследования новых видов полупроводниковой памяти, я в какой-то момент перестал воспринимать их всерьез, потому что обещания златых гор можно было лицезреть ежегодно, а вот с готовыми к серийному производству продуктами вечно была напряженка. В основном исследования концентрировались и концентрируются на том, чтобы преодолеть разрыв между DRAM и флэш-памятью, создав нечто одновременно быстрое, энергонезависимое и дешевое. Никаких серьезных достижений на этом поприще пока не достигнуто, и те разработки, которые все же дошли до стадии коммерциализации, в основном составляют небольшую долю от рынка EEPROM, как в виде отдельных чипов, так и дополнительных опций в КМОП-технологии.

Три наиболее зрелых технологии такого рода – это MRAM (магнитная RAM), FRAM (ферроэлектрическая или сегнетоэлектрическая RAM) и PCM (phase-change memory).

FRAM основана на сегнетоэлектрическом эффекте – свойстве некоторых материалов менять свои свойства под действием высокого напряжения. В частности, в FRAM используется изменение емкости конденсатора. Эта память появилась в серийных продуктах, например в микроконтроллерах MSP430, еще двадцать лет назад, но почти тогда же проявился ее главный недостаток – пленки сегнетоэлектрических слоев оказались плохо масштабируемыми, и развитие технологии остановилось на уровне 130 нм, а существующие до сих пор продукты – в основном довольно старые радиационностойкие микросхемы. Впрочем, в последние годы работы по сегнетоэлектрикам снова активизировались, и возможно нас ждет новое пришествие FRAM, на этот раз в виде FeFET, где из сегнетоэлектрика будет делаться затвор транзистора.

Разные варианты MRAM используют несколько физических эффектов, позволяющих манипулировать спином магнитных материалов и посредством него, на их электрические свойства. По сути, мы говорим о физической реализации концепции мемристора – резистора, сопротивление которого зависит от его предыдущего состояния. Первые серийные чипы MRAM появились еще в 2004, но проиграли технологическую войну флэш-памяти. Тем не менее, технология продолжает активно развиваться, подогреваемая тем, что у MRAM потенциально на несколько порядков большее количество циклов перезаписи, чем у флэш, а значит ее можно использовать как гибрид кэша и памяти долгосрочного хранения. Считается, что такое сочетание может быть востребовано в малопотребляющих микросхемах интернета вещей, и сейчас встраиваемые блоки MRAM предлагают такие именитые фабрики, как Samsung и GlobalFoundries.

PCM – класс памяти, основанной на изменении фазового состояния некоторых веществ, например с кристаллического в аморфное, под действием внешних факторов типа высокого напряжения или кратковременного нагрева (обычно проводимого при помощи пропускания большого тока через запоминающий элемент). Потенциальные преимущества PCM примерно такие же, как у MRAM – быстрое чтение и большое количество циклов перезаписи, что в теории может позволить заменить даже все три типа памяти одним унифицированным решением. На практике же изначальное внедрение PCM обернулось грандиозным провалом: в 2012 году Micron с помпой представили серийную линейку для применения в мобильных телефонах, однако уже к 2014 году все эти продукты были отозваны с рынка. Их вторая попытка стала более успешной – совместно с Intel в 2017 году была представлена память 3D Xpoint и линейка SSD Optane (Intel) X100 (Micron). Продажи пока что невелики, но отзывы потребителей довольно хорошие. Посмотрим, выдержит ли новая технология проверку временем и сможет ли действительно потеснить традиционные SSD на основе NAND Flash.

История развития стандартов памяти

Впервые память DDR2 использовалась в видеокарте NVIDIA GeForce FX 5800 Ultra. Хотя память была чем-то средним между DDR и DDR2.

Память GDDR3 была разработана специально для видеокарт, она имела те же характеристики, что и DDR2, однако с уменьшенным потреблением и тепловыделением, это позволило проектировать платы, с более высокими рабочими частотами. А значит, повышалась производительность и упрощалась система охлаждения.

Впервые DDR3 была установлена на модифицированную NVIDIA GeForce FX 5700 Ultra, а после в GeForce 6800 Ultra. Хотя стандарт был разработан инженерами ATI совместно с JEDEC, впервые его использовала компания nVidia. Сама ATI начала использовать этот тип памяти в серии Radeon X800. Также GDDR3 использовался в игровых приставках PlayStation 3 и Xbox 360

GDDR4 работала почти в 2 раза быстрее, чем предыдущая GDDR3. Технически она не сильно отличалась от GDDR3. Главными особенностями стало то, что GDDR4 имела повышенные рабочие частоты и уменьшенное энергопотребление – примерно в три раза меньше, чем у GDDR3.

ATI RADEON X1950 XTX стала первой видеокартой, на которую были установлены чипы GDDR4. Память не пользовался особой популярностью, снята с производства и заменена GDDR5.

GDDR5 — самый быстрый тип видеопамяти, который применяется в видеокартах hi-end класса, работающий на учетверённой частоте до 5 ГГц (хотя теоретически до 7 ГГц). Это дало возможность повысить пропускную способность до 120 ГБ/с при использовании 256-битного интерфейса. Для примера: чтобы повысить пропускную способность у памяти типа GDDR3 или GDDR4, нужно было использовать шину шириной 512 бит. При использовании GDDR5 производительность увеличивается вдвое, при меньших размерах самого чипа и с меньшими затратами энергии.

Развитие памяти видеокарты

GDDR GDDR2 GDDR3 GDDR4 GDDR5
Nvidia ATI
Год массового выпуска 2001 2003 2004 2006 2006 2008
Макс. Частота 200 MHz 500 MHz 900 MHz 1.2 GHz 1.4 GHz 5 GHz
Конфигурация 4 Mx32 4 Mx32 8 Mx32 8 Mx32 16Mx32 32Mx32
Ширина буфера 2n 4n 4n 4n 8n 8n
Напряжение 2.5 V 2.5 V 1.8 V 1.8 V 1.8 V 1.5 V

«Самая быстрая» видеопамять

Micron запустила в массовое производство «самую быструю» в мире оперативную память для графических ускорителей (GPU) GDDR6X. Об этом говорится в пресс-релизе компании.

Видеопамять GDDR6X обеспечивает пропускную способность до 1 ТБ/сек благодаря использованию новой технологии передачи сигналов PAM4. Новинка дебютирует в видеокартах Nvidia моделей Geforce RTX 3080 и RTX 3090. Джефф Фишер (Jeff Fisher), старший вице-президент подразделения GPU в Nvidia, оценивает скорость работы памяти как «беспрецедентую».

На данный момент Micron – единственный в мире производитель видеопамяти стандарта GDDR6X. Портфель GDDR6X-решений Micron представлен чипами емкостью 8 Гбит и скоростью от 19 до 21 Гбит/сек. В 2021 г. компания планирует добавить в него 16-гигабитную модель.

Сравнение производительности GDDR6X с памятью предыдущих поколений

Средне-бюджетные комплекты ОЗУ, суммарным объемом 16 ГБ

Модули, представленные ниже – одноранговые.

Частота XMP 2666 МГц

HyperX FURY HX426C16FB3K2/16. Чипы памяти Nanya A-Die, которые слабо поддаются разгону. Тайминги 16-18-18-36. Средняя цена 6300 рублей. Данный комплект отлично подойдет для владельцев материнских плат Intel, на чипсете не позволяющим поднимать частоту оперативной памяти выше 2666 МГц (например чипсеты H370 и B360).

Частота XMP 3200 МГц

Crucial Ballistix Sport LT

Crucial Ballistix Sport LT BLS2K8G4D32AESBK или AT BLS2K8G4D32AESTK. Чипы памяти Micron E-die. Тайминги 16-18-18-36. Средняя цена 7500 рублей. Данная память является, пожалуй, лучшим выбором по соотношению цена/качество. Она легко поддается разгону и сохраняет при этом низкие тайминги.

G.SKILL Ripjaws VF4-3200C16D-16GVKB. На рынке сейчас представлены варианты как на чипах Samsung B-die, так и на чипах Hynix. Тайминги 16-18-18-38. С высокой долей вероятности возьмет частоту 3600 МГц. Средняя цена 7500 рублей.

Patriot Viper PVB416G320C6K. Чипы памяти Hynix C-die, которые отличаются средним разгонным потенциалом. Тайминги16-18-18-36. Средняя цена 7000 рублей. Легко разгоняется до 3400 МГц без серьезного повышения таймингов, но стабильная работа с большей частотой не гарантируется.

ADATA AX4U320038G16-DT41. Чипы Hynix C-die. Тайминги 16-18-18-36. Средняя цена 7800 рублей. Для Ryzen третьего поколения достаточно легко взять 3600 МГц с таймингами 16-19-19-39. Для Intel 3733 МГц 18-20-20-42.

Частота XMP 3466 МГц

HyperX FURY HX434C16FB3AK2/16 (с подсветкой) и HX434C16FB3K2/16 (без подсветки). Может попасться как на чипах Micron J-die так и на Samsung B-die. Тайминги 16-18-18-36. Средняя цена 9000 — 10000 рублей. На чипах от Micron предел разгона 3600 МГц, а на Samsung 3733-3800 МГц.

Преимущества GDDR3

Стробирующий (импульсный) сигнал GDDR3 в отличии от GDDR2 является однонаправленным и имеет несимметричный выход (Uni Directional & Single-ended). Это означает, что во время обращения раздельные процессы чтения и перезаписи импульсных данных происходят быстрее чем это было у GDDR2. Память GDDR3 имеет отличную от предшествующих версий архитектуру: в частности удалось уменьшить интерференцию других систем, что обеспечило большую стабильность всей системы при частотах около 800 МГц. У GDDR3 предусмотрен также аппаратный сброс потенциала, что позволяет извлекать все данные из памяти и только затем перезагружать её.

  • GDDR3 имеет возможность аппаратного сброса, позволяющий ему очистить все данные из памяти, а затем начать заново.
  • Более низкие требования напряжения приводят к снижению потребляемой мощности.
  • Более высокие тактовые частоты.
  • Простота в изготовлении.
  • Низкое тепловыделение.
  • Простая синхронизация (GPU, VRAM, PCI-E).
  • Очень высокие предельные объемы.
  • Низкая цена.
  • Впечатляющий запас прочности.
  • Низкие тайминги.

NAND Flash

Что же касается NAND Flash, то ее стоимость за бит уже давно снизилась настолько, что этот вид памяти стремительно завоевывает рынок памяти для хранения информации, один за одним забивая гвозди в крышку гроба HDD и, например, дав нам возможность иметь много памяти в крошечных мобильных телефонах. Ключевые производители чипов NAND Flash – Samsung (33% и почти половина накопителей для телефонов), Kioxia (бывшая Toshiba, 20% рынка), Western Digital (14%), SK Hynix (11%), Micron (10%), Intel (8%).

Из этого списка, впрочем, надо исключить Intel, которые недавно объявили о переходе своей доли в совместном с Micron производстве к последним и об уходе с рынка флэш-памяти. Еще один интересный игрок – Western Digital, один из гигантов HDD, ныне стремительно переориентирующийся на твердотельные диски и ставший для этого уникальным зверем – fabless-производителем памяти. WD выкупили для этого больше трети производственных мощностей Kioxia, которые делают одни и те же чипы для себя и для клиента. Еще одно неожиданное последствие переориентации WD – они стали одним из наиболее заметных участников коммьюнити RISC-V, активно внедряя эту систему команд в свои контроллеры накопителей.

И в завершение рассказа про NAND Flash, надо непременно рассказать о произошедшей в последние годы технологической революции. Флэш-память, как и “обычная” микроэлектроника, уже уперлась в технологический предел миниатюризации транзисторов, и если в вычислительных системах можно хотя бы попробовать отыграть что-то за счет архитектуры, то в памяти плотность упаковки – это главное и единственное, что по-настоящему волнует. Поэтому, пока разговоры о переходе обычных КМОП-микросхем в третье измерение все еще остаются разговорами, 3D NAND уже четыре года как массово присутствует на рынке, позволяя разместить на кристалле в десятки, а то и в сотни раз больше ячеек памяти, чем обычное планарное решение.

Схематичный разрез двухмерной и трехмерной NAND Flash памяти

На электрической схеме выше транзисторы размещены последовательно, сверху вниз, тогда как в планарном варианте изготовления они расположены на плоскости, занимая ценную площадь на кристалле. Однако простая и монотонная структура позволила реализовать самое логичное, что можно сделать – сквозной вертикальный канал транзистора, выглядящий примерно так же, как и электрическая схема (и показанный на схеме справа желтым, идущим сквозь зеленые затворы). Разумеется, оно только звучит логично и просто, а на практике создание глубокого отверстия с вертикальными стенками – это одна из самых сложных операций, возможных в микроэлектронной технологии. Тем не менее, инженерные задачи были решены, и сейчас такие этажерки, как на рисунке выше, включают в себя уже до 128 транзисторов в серийно производимых чипах и до 192 слоев в девайсах, ожидаемых через год-два. Проектные нормы производства современной флэш-памяти примерно соответствуют уровню 15-20 нм, так что такая плотность упаковки – это эквивалент норм 0.1-0.2 нм! В обычном КМОП повторить этот фокус в точности не удастся, но свежие исследования по GAAFET предполагают упаковку нескольких горизонтальных каналов друг поверх друга. Samsung рассчитывает таким образом выйти на уровень 1 нм, а то и чуть меньше.

На этом мы прошли полный путь от кэша микропроцессора до памяти долговременного хранения и посмотрели на технологии, занимающие больше 97% рынка полупроводниковой памяти. Однако в оставшихся небольших процентах, в числе прочего скрываются и новые перспективные типы памяти, на которые тоже было бы неплохо взглянуть.

Еще один небольшой исторический экскурс, про Kingston

Kingston – американская компания, основанная в 1987 году, стала одним из пионеров внедрения SIMM-модулей как удобной альтернативы прямому поверхностному монтажу микросхем памяти. Быстро развиваясь на фоне роста рынка персональных компьютеров, Kingston стали “единорогом” с миллиардной капитализацией уже к 1995 году, и с тех пор выросли еще на порядок, увеличив долю на рынке модулей DRAM c 25% до 80% и расширившись на производство других продуктов, таких как SSD, где Kingston тоже является мировым лидером, правда с более скромными 26% мирового рынка против 8% и 6% у ближайших конкурентов.

Модуль оперативной памяти Kingston

Обратите внимание на плотность упаковки чипов на плате

Kingston — интересный пример того, как можно быть успешной электронной компанией без собственной разработки микросхем и без полной вертикальной интеграции, популярной в последнее время. Добавленную стоимость и уникальные характеристики можно обеспечить на разных этапах создания продукта, и как раз Kingston как успешная электронная компания без собственного производства микросхем может быть хорошим примером для отечественных разработчиков.

А что же японцы, правившие бал в восьмидесятых и вытеснившие с рынка DRAM Intel? В 1999 году профильные подразделения Hitachi и NEC объединились в компанию Elpida, которая позже поглотила DRAM-бизнес Mitshibishi. В двухтысячных компания активно развивалась, много вкладывала в перспективные производства и была поставщиком, например, для Apple. Но финансовый кризис 2009 года очень сильно подкосил Elpida, и в 2012 году она была вынуждена подать на банкротство, после чего была куплена Micron.

На этой печальной ноте давайте заканчивать с DRAM и переходить к flash-памяти, где все еще есть по крайней мере одна успешная японская компания.

Секрет высокой скорости

Ключевым нововведением GDDR6X стало применение четырехуровневой амплитудно-импульсной модуляции (Pulse Amplitude Modulation, PAM4). Данная технология позволяет существенно повысить производительность видеопамяти без увеличения энергопотребления.

Предшественница GDDR6X – память GDDR6 – использует схему «без возврата к нулю» (Non-return-to-zero, NRZ или PAM2), но она имеет некоторые ограничения, когда дело касается таймингов и энергопотребления.

Пример кодирования и передачи одинакового объема данных с использованием интерфейсов NRZ и PAM4

PAM4 позволяет передавать два бита за такт за счет использованием четырех уровней сигнала вместо одного бита и двух уровней сигнала (1 или 0), как в PAM2. Благодаря этому пропускная способность вырастает вдвое при той же частоте. При этом скорость передачи данных у видеопамяти GDDR6X на 30% выше, чем у GDDR6 — 21 Гбит/сек на контакт против 16 Гбит/сек. Таким образом максимальная пропускная способность устройства с GDDR6X составляет 84 ГБ/сек (64 ГБ/сек у GDDR6), а суммарная пропускная способность системы может превышать 1 ТБ/с по сравнению с «потолком» в 700 ГБ/с у предшественницы.

Телемедицина, нейрокомпьютерные интерфейсы и роботы: что ждет сферу социальных инноваций Москвы
Инновации и стартапы

Специалисты Micron, по заявлению компании, работали над внедрением технологии многоуровневой передачи сигналов в интерфейсы памяти с 2006 г. В процессе компания получила 45 патентов, затрагивающих эту тему.

Эволюция: GDDR5X

Новая спецификация GDDR5X была утверждена в январе этого года, а нынешним летом в продажу поступила первая видеокарта NVIDIA GeForce GTX 1080, оснащенная такой памятью.

В GDDR5X традиционная структура памяти, представленная отдельными микросхемами, соединенными с ГП линиями передачи данных, адаптирована под новые требования. При этом основная структура карты изменилась мало. Обновился техпроцесс, и в итоге все это вместе держит в узде цены на память GDDR5X. По сравнению с предыдущей, вышедшей еще в 2008 году памятью GDDR5, новая технология обладает следующими преимуществами.

Предвыборка данных (prefetch) увеличилась с 8n до 16n. Теперь благодаря оптимизации внутренних линий передачи данных за один цикл доступа к памяти контроллер может выбирать не 32, а все 64 байта на чип, в результате чего пропускная способность памяти увеличивается вдвое без необходимости повышения тактовой частоты. Благодаря улучшенному техпроцессу повысилась энергоэффективность: рабочее напряжение с 1,5 В снизилось до 1,35 В, что, в свою очередь, уменьшает тепловыделение.

Емкость отдельно взятой микросхемы новой памяти составляет 4, 8 или 16 Гбит (у GDDR5, для сравнения, — от 512 Мбит до 8 Гбит). Вместе с тем, помимо степеней двойки, спе­цификация включает два новых проме­жуточных объема — 6 и 12 Гбит, что позволяет более гибко варьировать общий объем наборной памяти, прежде всего в мобильных устройствах.

Революция: HBM2

В то время как производители GDDR пошли по пути совершенствования памяти предыдущего поколения, разработчики появившейся в 2013 году технологии HBM (High Bandwidth Memory — память с высокой пропускной способностью) используют совсем другой подход. Эта память подразумевает объединение микросхем в стек. Стеки располагаются на промежуточном слое — интерпозере. Задача интерпозера заключается в соеди­нении дорожек между памятью и видеочипом. Благодаря коротким дорожкам (чипы памяти расположены на подложке GPU) достигается невероятная скорость и энергоэффективность. Однако, поскольку плотность хранения отдельно взятого стека в первом поколении ограничена гигабайтом, а размер интерпозера – четырьмя стеками, в сумме на GPU приходится только четыре гигабайта, а этого для поддержки игры в 4K, виртуальной реальности или высокопроизводительных вычислений слишком мало.

Вторая модификация HBM2, которая вышла в начале 2016 года, решает данную проблему. Возможным это становится благодаря повышению плотности размещения данных на микросхему, увеличению тактовой частоты с 500 МГц до 2 ГГц и использованию режима псевдоканалов, который разбивает один аппаратный канал памяти на два виртуальных, что, подобно гиперпоточности ЦП, приводит к более эффективному задействованию ресурсов. Samsung запустила серийное производство чипов с четырьмя стеками, а SK Hynix планирует начать его в этом квартале. Спецификация теперь позволяет использовать до восьми микросхем в стопке. Исходя из этого, оба производителя намерены еще в этом году увеличить емкость стека до восьми гигабайт.

Первые устройства, которые фактически используют память HBM2, — это ускорители NVIDIA Tesla P100 для серверов и рабочих станций. Пропускная способность ви­деокарт на архитектуре Pascal с 16 Гбайт памяти достигает 720 Гбайт/с — это в три раза больше, чем пропускная способность предыдущих топовых карточек поколения NVIDIA Maxwell. AMD же планирует выпустить первые видеокарты на HBM2 в розничную продажу в начале 2017 года.

Как выбрать оперативную память

Выяснив, как узнать оперативную память компьютера и какой объём нужен, можно отправляться в магазин. Но можно ли этими сведениями ограничиться? Однозначно, нет. Конечно, прежде всего нужно определить, какой тип (для новых компьютеров это DDR3 или DDR4) и объём нужны. Но есть ещё несколько факторов, которыми нельзя пренебречь.

Во-первых, оперативная память должна согласовываться с материнской платой и процессором не только по типу, но и по поддерживаемой ими частоте. Нет смысла покупать скоростную память, если другие комплектующие работают на более низких частотах. В лучшем случае память будет функционировать на пониженной частоте, а то и вовсе откажется работать. Если материнская плата поддерживает двухканальный режим, то лучше купить две одинаковые планки памяти. Это немного повысит её производительность. Обычно в продаже можно встретить уже готовые комплекты из 2 или 4 планок памяти.

Во-вторых, нужно обращать внимание на маркировку. Есть специальные типы памяти, имеющие приставку ECC

Означает она наличие дополнительного контроля ошибок. Большинство материнских плат не поддерживает такую память. Оперативная память для ноутбуков отличается от используемой в ПК и имеет приставку SO-DIMM.

В-третьих, немаловажное значение имеют тайминги. Это скоростная характеристика, означающая задержку сигнала

Обозначается тремя или четырьмя цифрами через дефис. Например, 9-8-11-18. Естественно, чем меньше числа, тем лучше, но для большинства пользователей эта разница будет практически неощутима. Зато тайминги значительно влияют на цену.

Оперативная память – это важная и сложная часть компьютера, влияющая на работу и производительность всей компьютерной системы. Она не так часто выходит со строя, но в этом и подвох – ведь от неё этого не ждут. Правильная диагностика и поиск ошибок в ОЗУ могут помочь избежать дорогостоящего ремонта и уж точно сэкономят уйму времени.

Как отличаются два разных процессора, так может отличаться и оперативная память. Это справедливо и относительно её стоимости. Но если более высокая цена процессора практически всегда означает, что он будет более производительным, то цена памяти сильно зависит от частоты и таймингов, которые хоть и гарантируют рост производительности, но зачастую незначительно влияют общую производительность системы

На них следует обращать внимание лишь при сборке игровых и высокопроизводительных рабочих компьютеров

Промышленное внедрение

Впервые DDR3 была установлена на модифицированную NVIDIA GeForce FX 5700 Ultra, а после в GeForce 6800 Ultra. Хотя стандарт был разработан инженерами ATI совместно с JEDEC, впервые его использовала компания nVidia. Сама ATI начала использовать этот тип памяти в серии Radeon X800. Также GDDR3 использовался в игровых приставках PlayStation 3 и Xbox 360.


Gddr3

Несмотря на то, что первая карта для того, чтобы использовать технологии, разработанная ATI была GeForce FX от NVIDIA 5700 Ultra, где они заменили GDDR2 чипы, используемые до этого момента, следующая карта использовавшая GDDR3 была GeForce Nvidia 6800 Ultra, где она сыграла ключевую роль в сохранении разумных требований мощности по сравнению с предшественником карты, на GeForce 5950 Ultra. ATI начала использовать память на своих картах Radeon X800. GDDR3 был выбран компанией Sony для графического процессора PlayStation 3 игровой консоли, хотя на базе NVIDIA GPU его способен также получить доступ к системной памяти, которая состоит из XDR DRAM разработанный Rambus Incorporated (Подобная технология продается компанией NVIDIA, как TurboCache в графических процессорах платформы PC ). От Microsoft Xbox 360 поставляется с 512 Мбайт памяти GDDR3, и помогает в использовании этой памяти в качестве стандартной системной памяти, а не только видеопамяти. Wii от Nintendo также содержит память GDDR3.

Небольшой исторический экскурс, про Intel

Компания Intel была основана в 1968 году с прицелом на рынок памяти. Основатели фирмы считали, что относительно новые тогда интегральные схемы имеют потенциал вытеснить с рынка вычислительных машин память на магнитных сердечниках. Первыми продуктами Intel были чипы биполярной статической памяти, почти сразу же за ними последовала серия крайне успешных чипов DRAM, а вот заказы на разработку микропроцессоров очень долго рассматривались как что-то временное и побочное до середины восьмидесятых, когда серьезная конкуренция со стороны японских производителей DRAM, таких как Toshiba, вынудила компанию уйти с рынка памяти.

Позднее, Intel развивал бизнес по производству флэш-памяти, совместно с другой американской компанией, Micron, но буквально на днях продал эти активы ей же, и в ближайшем будущем под маркой Intel будет выпускаться только память Optane, основанная на фазовых эффектах.

Общий объем мирового рынка DRAM оценивается в 60-80 миллиардов долларов и составляет чуть больше половины мирового рынка памяти. Оставшуюся часть почти целиком занимает NAND Flash, а на долю всего остального разнообразия приходится не более трех процентов рынка. Производство чипов DRAM держится на трех китах – корейских Samsung и SK Hynix, а также американской компании Micron. Все три – в пятерке крупнейших полупроводниковых компаний мира, причем если Samsung чем только не занимается, то Micron и SK Hynix производят только память, DRAM и Flash. Три гиганта занимают без малого 95% рынка, а остатки рынка почти полностью разделены между несколькими тайваньскими компаниями.

Основные рыночные ниши – это потребительская электроника, включая смартфоны (40-50%), а также персональные компьютеры (15-20% ), серверное и телекоммуникационное оборудование (20-25%). Самые большие перспективы роста при этом ожидаются в автомобильном секторе, благодаря разного рода автопилотам и другим системам помощи водителю, а также в вычислениях, связанных с искусственным интеллектом.

Стоит отметить, что все чаще речь идет не о привычных нам “планках памяти”, а об аккуратной интеграции чипов на плату телефона или даже непосредственно в корпус процессора, в виде так называемой HBM – high bandwidth memory. Такая конфигурация позволяет увеличить пропускную способность памяти за счет использования многоразрядных шин, которые нет возможности реализовать при соединении корпусов на печатной плате, уменьшить задержки и потребление, а также эффективно разместить кристаллы памяти в несколько слоев, разместить большую емкость на меньшей площади.

Внутренности корпуса графического ускорителя AMD Fiji. Центральный кристалл – собственно вычислитель, по обеим сторонам – упакованные в несколько слоев чипы HBM DRAM.

Впрочем, и планки памяти тоже никуда не денутся в обозримом будущем, и спрос на них стабильно растет – стараниями не только геймеров, но и производителей серверов. Объем рынка модулей памяти составляет приблизительно 16 миллиардов долларов, и он выглядит как Гулливер в окружении лилипутов – рыночная доля Kingston Technology превышает 80%, против 2-3% у ближайших конкурентов. При этом сами чипы Kingston закупают у двух из трех больших производителей – Micron и SK Hynix. Samsung не привлекается, видимо, в силу того, что большинство их чипов DRAM предназначено для мобильных телефонов.

Небольшое отступление: PROM

И, раз уж я упомянул EEPROM, нелишне обсудить и экстремальный случай – когда память только читается, но не перезаписывается – то есть Read-Only Memory или ROM. Такая память гораздо чаще используется в промышленных применениях и для разнообразных прошивок. Такая память может быть запрограммирована на этапе производства с помощью наличия или отсутствия металлических соединений (или транзисторов, как это было сделано в Intel 8086. Но что, если раз-другой записать память все-таки нужно, причем уже после того, как чип произведен? На этот случай существует довольно много разновидностей PROM (P – programmable), довольно часто встраиваемых на кристалл вычислительной системы, например, микроконтроллера, но продолжающих активно использоваться и в качестве отдельных чипов.

Самый простой вариант – это однократно программируемая память типа Antifuse, она же память на пережигаемых перемычках. Идея очень проста: у нас есть структура (транзистор или резистор), которая может быть необратимо разрушена, превратившись в короткое замыкание или разрыв цепи. Чтение такой памяти выглядит как проверка на наличие замыкания или разрыва, а запись возможна только один раз, потому что изменение структуры необратимо.

Внешний вид памяти на пережигаемых перемычках

В случае, если может быть нужно записывать память несколько раз, например изредка обновлять прошивку, в дело вступают разные варианты EPROM (E – erasable) и EEPROM (EE – electrically erasable). Технологически они базируются на транзисторах с плавающим затвором и являются примитивной разновидностью флэш-памяти. Сейчас под термином EEPROM обычно подразумевают NOR Flash c возможностью побайтной записи и удаления данных.

GDDR6X в новых видеокартах Nvidia

Использование модуляции PAM4 меняет схему работы всей подсистемы памяти, отмечает издание Tom’s Hardware. Именно поэтому она до сих пор не применяется в «обычной» оперативной памяти DRAM. Декодирование четырех уровней сигнала за такт значительно сложнее аналогичной операции с двумя уровнями, поэтому и новые чипы Micron устроены сложнее предшественников.

Nvidia, в свою очередь, и вовсе пришлось разработать полностью новый контроллер памяти для использования GDDR6X в своих видеокартах Geforce RTX 3080 и 3090, которые также отличает более сложный дизайн печатных плат по сравнению с видеокартами предыдущего поколения.

Тем не менее, использование GDDR6X более чем оправданно, пишет Tom’s Hardware. Geforce RTX 3090, к примеру, может похвастаться пропускной способностью около 1 ТБ/сек по сравнению с 616 МБ/сек, которыми ограничен актуальный флагман Nvidia – Geforce RTX 2080 Ti на базе микроархитектуры Turing.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Онлайн
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: